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1. INTRODUCTION 

Surface weather and climate observations are the 
backbone of a multitude of analyses, studies and 
assessments.  Errors in the observations do occur; if left 
unidentified, they can have severe and adverse affects 
on analyses and the decisions that result from them.  
Rigorous quality control of climate data is probably the 
single most important thing an analyst can do to ensure 
a successful outcome.  Traditionally, quality control 
(QC) systems have been designed to emphasize the 
identification of human errors in COOP-like 
(Cooperative Observer) observational records that occur 
while reading gauges and thermometers, recording the 
data on paper, and keypunching these data into 
electronic format.  Traditional QC methods have 
employed a series of quality checks that an observation 
must pass if it is to be considered valid.  The outcomes 
of these checks are typically of a “yes” or “no” nature, 
and the observation is flagged with notations based on 
these outcomes.   Examples of such quality checks 
include range checks and internal and external 
consistency checks, some of which are operated 
manually.  In general, this type of QC system can be 
termed categorical and deterministic; that is, they 
employ categorical validity checks, from which a 
determination of validity results.   

An ever-increasing number of climate observations 
are being made electronically at automated weather 
stations.  The development of the ASOS (Automated 
Surface Observing System), SNOTEL (Snowpack 
Telemetry), RAWS (Remote Automated Weather 
Station), and Agrimet networks, and the prospect of a 
COOP modernization program, all reflect the increased 
importance of electronic sensors and automated data 
delivery systems now and in the future.   These new 
measurement technologies are presenting a number of 
challenges for traditional QC systems that include the 
following: 

 
� Errors from electronic measurement systems are 

more often manifested as continuous drift, rather 
than categorical mistakes.  Therefore, continuous 
estimates, rather than categorical tests, of 
observation validity are most meaningful.   

 
� Increased usage of computer models (e.g., 

hydrologic models) that use climate observations as 
input has increased the need for quantitative 
estimates of observational uncertainty.  
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� The range of applications for climate data is 

increasingly rapidly, and each application has a 
difference tolerance for outlier data points.  
Probabilistic information from which a decision of 
validity can be made is more useful than a 
predetermined, “one size fits all” declaration of 
validity.   

   
� Data generated by automated electronic systems 

are often more voluminous (e.g., shorter time step) 
and disseminated in a more timely manner than 
those from manual systems, favoring automated 
QC methods over those involving manual 
inspection.  

 
A new generation of QC systems is being formulated 

in response to these changing needs and priorities.  
This paper describes the development of such a new-
generation QC system for USDA-NRCS SNOTEL data 
that uses climate mapping technology and climate 
statistics to provide a continuous, quantitative 
confidence probability for each observation, estimate a 
replacement value, and provide a confidence interval for 
that replacement.   An overview of system structure and 
operation is given, and the paper concludes with a 
series of questions that require further research.   

2. BACKGROUND 

In the mid and late 1990s, Oregon State University’s 
Spatial Climate Analysis Service (SCAS) developed 
new precipitation maps for the United States (USDA-
NRCS, 1998; Daly and Johnson, 1999). SNOTEL was 
the primary high-elevation network used for the mapping 
and proved to be essential for map development.  In 
addition to precipitation data, the more than 700 
SNOTEL stations report temperature and snow water 
equivalent, data that are increasingly important for water 
supply assessment, climate analysis, power generation 
planning, and other uses in the West. 

SNOTEL data are recorded electronically and 
transmitted via meteor burst technology to data 
collection centers.  The stations are in remote areas 
with limited winter access, and thus must operate 
unattended for long periods of time in difficult weather 
conditions.  The data have never undergone complete 
spatial quality assurance and quality control corrections. 
Work within NRCS and at the Western Regional Climate 
Center has attempted to accomplish this, but has never 
been fully completed. Temperature, in particular, has 
posed problems for data quality assessment. 

Over the past decade, SCAS has been developing 
tools for conducting “spatial quality control” as part of its 
ongoing climate mapping work in the United States and 
abroad (Daly et al., 2000). The tools are based on 
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PRISM (Parameter-elevation Regressions on 
Independent Slopes Model), developed at OSU (Daly et 
al., 1994, 2002, 2003).  The spatial QC tools operate in 
a largely automated mode, with a graphical user 
interface to help aid QC decisions in difficult situations.  
These tools have proven to be effective in identifying 
invalid, incorrect, or missing data.  SCAS spatial QC 
tools operate on the premise that spatial interpolation 
can be used to identify bad data values if there is 
sufficient skill in the interpolation process.  A climate 
estimate is made at a station location when the station’s 
data value is withheld from the interpolation.  If there is 
a large discrepancy between the station value and the 
estimate at the station’s location, then the station value 
may be in error.   PRISM provides a high degree of skill 
to the spatial interpolation process, making the 
identification of many erroneous data values possible.    

In 2001 the USDA Natural Resource Conservation 
Service (NRCS) asked the SCAS to develop a formal 
QC system for their SNOTEL data products, based 
upon SCAS spatial QC tools.  The system was to be 
used to QC historical daily data over the SNOTEL 
period of record (beginning in about 1980), and 
subsequently installed and operated at NRCS to QC 
daily data in near real-time.  

3. OVERVIEW OF THE PRISM PROBABILISTIC-
SPATIAL QUALITY CONTROL (PSQC) SYSTEM 

A process schematic of the new QC system, termed 

the PRISM Probabilistic-Spatial Quality Control (PSQC) 
System, is shown in Figure 1.  The system consists of 
two main components:  (1) climatological grid 
development, and (2) the QC iteration process.  These 
are discussed below as they apply to the QC of 
SNOTEL daily temperature observations.  

3.1. Climatological Grid Development 

The PRISM PSQC system requires running PRISM 
to produce a high-quality spatial estimate of temperature 
at each SNOTEL station location each day.  Experience 
has shown that the highest interpolation skill for daily 
temperature is obtained by running PRISM using a 
predictive, or “background,” grid that represents the 
long-term climatological temperature for that day or 
month, rather than a digital elevation grid.  Such 
background grids have the expected spatial patterns of 
climatological temperature built in to provide maximum 
predictive skill for a given day.   

The highest-quality existing climatological 
temperature grids for maximum and minimum 
temperature were produced in 1998 by SCAS.  These 
grids are the best currently available for the western US, 
and would be suitable as PSQC predictive grids, except 
for two main deficiencies: (1) They represent the 1961-
1990 climatological averaging period, and thus do not 
best reflect the time frame of the SNOTEL periods of 
record; and (2) were developed at a spatial resolution of 
2.5 arc-minutes (~4 km), which does not capture all of 
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Figure 1. Process schematic of the PRISM Probabilistic Spatial Quality Control (PSQC) System. 



the detailed temperature patterns known to exist in 
mountainous terrain.  For example, the height of Mt. 
Hood on the 2.5-minute resolution digital terrain grid is 
only 2662 m, 765 m lower than the actual height of 3427 
m.  This height discrepancy translates into an 
approximately 5

�

C error in temperature, assuming an 
average lapse rate. Such large errors would be 
incorporated as noise into the SQC system. 

Under USDA-NRCS funding, work is underway to 
produce new 1971-2000 monthly average minimum and 
maximum temperature grids at 30-sec (0.8-km) 

resolution for the western United States (see Doggett et 
al. (2004) for details).  The 0.8-km grid cell size captures 
a good deal of the topographic variability in 
mountainous regions.  Initial drafts of these grids are 
being used as the predictive grids to test the PRISM 
PSQC system.  Figure 2 is an example of a PRISM 
regression function, showing a local regression between 
observed maximum temperatures for 20 July 2000 and 
their 1971-2000 climatological mean values for the 
month of July.   The tight regression fit suggests that the 

spatial patterns of the gridded July climatological mean 
maximum temperatures are very good at approximating 
those of 10 July 2000.   

Even at 0.8-km resolution, there is not a perfect 
match between the station point climatological values 
and the climatological values of the grid cells containing 
the stations.  This misalignment of point and grid cell 
values can produce noise in the regression functions.  
These discrepancies, termed “grid biases,” are 
accounted for by calculating the point-grid cell 
differences for the 1971-2000 climatology at each 

station, and adjusting the background climatological 
values by these differences when calculating each 
PRISM PSQC regression function. 
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Figure 2. Scatterplot and PRISM regression line for 20 July 2000 maximum temperature and 1971-

2000 mean July maximum temperature for the location of SNOTEL station 21D12S in the Cascades 
Mountains south of Mt. Hood, Oregon.  Size of circles represents a station’ 



4. THE QC PROCESS 

The goal of the QC process is to, through a series of 
iterations, gradually and systematically “weed out” 
spatially inconsistent observations from consistent ones.  
The QC process consists of two nested loops (Figure 1).  
In the daily loop, PRISM is run for each station location 
for each day within the period of record, and summary 
statistics are accumulated.   Once all days have been 
run, confidence probabilities (CP) for each daily station 
observation are estimated (discussed below).  These 

CP values are used to weight the daily observations in a 
second series of PRISM daily runs.  Observations that 
have lower CP values are given lower weight, and thus 
have less influence, in the second set of PRISM 
predictions, and are also given lower weight in the 
calculation of the second set of summary statistics.  CP 
values are again calculated and passed back to the 
daily PRISM runs.  This iterative process continues until 
the change in CP values between the present and 
previous iterations falls below a threshold “equilibrium” 
level, at which time the process stops and summary QC 
information is produced.  

Variables calculated during the QC process are 
listed in Table 1.  They fall into three main categories: 
(1) PRISM variables, (2) summary statistics, and (3) 
probability statistics.  During the daily loop, PRISM is 
run in point mode to obtain a “best” prediction,” P, for 
each station location for each day.  First, a prediction is 
made for the target station in its absence, using all 
available observations from surrounding stations for the 
PRISM regression function.  The process is then 
repeated several times while deleting nearby 
observations, first singly, then in pairs.  The prediction 
that most closely matches the observation, O, is 
accepted. The cycles of deletion are performed to 
preclude bad observations from contaminating the 
predictions.  It is assumed that the chances of more 

than two bad observations occurring in the immediate 
vicinity of each other on a given day are small.  The 
residual, R, (R = P - O) and the regression standard 
deviation, S, are also calculated by PRISM.   S is of 
notable importance, in that it quantifies the standard 
error for the daily temperature prediction at the target 
station, and represents the uncertainty of a value that 
could be used as a replacement for the observation.   

Daily values for O, P, R, and S are accumulated in a 
database, and summary statistics for these variables 
are calculated for each day of the year.  A 30-day 

moving window, centered on the target day, within a 
five-year moving window, centered on the target year 
(N=150), are used to calculate localized “long-term” 
means and standard deviations of O (

osO , ), P (
psP , ), 

R (
rsR , ), and S (

ssS , ).   For example, summary 

statistics for July 15, 1995 are accumulated from all 
non-missing days within the period July 1-30, 1993-
1997.  The 30-day and 5-year windows were thought to 
represent a good compromise between including 
enough days to produce a stable mean and standard 
deviation, but not so many as to dilute seasonal and 
inter-annual trends in spatial climate patterns and 
nearby station availability.   

Once the summary statistics are calculated for each 
day of the year, each daily observation, prediction, 
residual, and standard deviation is compared to its 
“long-term” mean and standard deviation with a t-test, 
and a p-value is calculated.  The p-value estimates the 
(two-tailed) proportion of observations that can be 
expected to fall at least as far away from the mean as 
the daily value (Figure 3).   The daily p-values for 
observation, prediction, residual, and standard deviation 
are multiplied by 100 to express them as percentages, 
and are denoted OP, PP, RP, and SP, respectively.  In 
addition, an overall confidence probability for the 
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Figure 3. Two-tailed p-values (orange shaded areas) for a generic daily value (X) its mean ( X ), and 

standard deviation ( xs ) for: (a) a distribution with a large xs , and (b) a distribution with a small xs .  

Note that the p-value is much higher for a given deviation from X  when xs  is large. 



observation, CP, is calculated from these probability 
statistics (discussed later).   

OP is a measure of the unusualness of an 
observation compared to its normal distribution for that 
time of year.  Invalid observations are often associated 
with low OP values, but not always.  A valid observation 
that accurately tracks a cold wave would have a low OP 
value because it is an unusual reading, but an invalid 
observation that records a near average temperature 
during that same cold wave would have a high OP 
value, because of its lack of unusualness.   

PP is a measure of the unusualness of a prediction 
compared to its normal distribution for that time of year.  
As in the case of OP, PP is often associated with poor 
predictions, but not always.  A good prediction that 
accurately tracks a cold wave would have a low PP 
value because its an unusual prediction, but a poor 
prediction of a near average temperature during that 
same cold wave would have a high PP value, because 
of its lack of unusualness.   

SP is a measure of the unusualness of the standard 
deviation of the PRISM regression function compared to 
its normal distribution for that time of year.    A low SP 
value indicates that the regression function is unusually 
noisy, and may indicate that an invalid observation is in 
the data set.  However, it could also mean that the 
relationship between the daily temperatures and their 
1971-2000 climatologies is unusually noisy.   

RP has particular importance to the QC process 
because is has the most relevance to the consistency, 
and hence validity, of the observation.  RP is a measure 
of the relative success of the model prediction in 
approximating the observation.  A low residual 
probability indicates that PRISM is having an unusually 
difficult time predicting for a station on a particular day.  
RP implicitly accounts for the overall ability of PRISM to 
predict for a daily station observation; if the residual for 
that time of year is highly variable, with many large 
values, rs will be large, and RP will be accordingly 

larger for a given deviation of R from R  (see Figure 3a).  
As such, a small RP indicates that the observation is 
unusually inconsistent with its neighbors (which are 
used as predictors), and this lowers confidence.  
Because RP represents the single most useful estimate 
of confidence in the observation, CP, the overall 
confidence probability, is currently set to the value of 
RP.   

Initial tests of the QC system using RP as the 
estimate of CP indicated that the system was too strict 
in its estimate of station confidence.  In many cases, the 
CP values were lower than we thought they should be.  
As a result, several measures were implemented to 
“give the observation every chance of success.”  They 
are as follows: 

 
� Precision:  The precision of the daily station 

observations varies from 0.1°C for SNOTEL, 
Agrimet, and RAWS, to 1°F for COOP, to 1°F – 1°C 
for ASOS, depending on the station.  Therefore, for 
probability calculations, 1°C (the most imprecise 
possibility) is now subtracted from differences 

between the daily value and its “long-term” mean 
before a t-test is conducted.   

 
� Accounting for bias in R : As discussed above, 

RP is used to approximate CP.  In the calculation of 
RP, R and rs are the operative mean and standard 

deviation. R may show a tendency for bias over the 
“long-term” period.  If the mean is biased 1 or 2 
degrees from zero, a daily R of zero (perfect 
prediction) would be 1 or 2 degrees from the mean, 
and receive a relatively low RP value, which seems 
counterintuitive; perhaps a nearby station which 
was causing the long-term prediction bias is 
missing that day.  Therefore, the difference 
between R and R is now calculated as the minimum 
of the difference between R and R and R and zero.   

 
� A more liberal substitute for rs :  The RP value 

for a daily observation is largely dependent on rs , 
which characterizes the variability in the distribution 
of R.  If rs is very small, low RP values can result 

for relatively small differences between R and R .  

rs tends to be small for a number of reasons, 
including the fact that a “best” prediction, which 
tries to match the observation, is used in the 

calculation of rs .  A more robust calculation of 
distribution variability was implemented, which 
calculates a new standard deviation as the 

maximum of rs , S, S and 1°C.  S and S represent 
the daily and average standard deviation of the 
PRISM regression function, and can be thought of 
as the “prediction precision.”  A 1°C minimum 
represents the practical notion that distributions 
with standard deviations less than the precision of 
the observations make little sense.   

 

5. SUMMARY AND QUESTIONS TO CONSIDER 

An ever-increasing number of climate observations 
are being made electronically at automated weather 
stations.  These new measurement technologies are 
presenting a number of challenges for categorical and 
deterministic QC systems designed for manual 
observing systems, such as COOP.  Errors from 
electronic measurement systems are more often 
manifested as continuous drift, rather than categorical 
mistakes.  Therefore, continuous estimates, rather than 
categorical tests, of observation validity are most 
meaningful.  Increased use of computer models that 
require climate observations as input has heightened 
the need for quantitative estimates of observational 
uncertainty.  The range of applications for climate data 
is increasingly rapidly, and each application has a 
difference tolerance for outlier data points.  Probabilistic 
information from which a decision of validity can be 
made is more useful than a predetermined, “one size fits 



all” declaration of validity.  Data generated by 
automated electronic systems are often more 
voluminous (e.g., shorter time step) and disseminated in 
a more timely manner than those from manual systems, 
favoring automated QC methods over those involving 
manual inspection.  

A new generation of QC systems is being formulated 
in response to these changing needs and priorities.  
This paper described the development of such a new-
generation QC system for USDA-NRCS SNOTEL data 
called the PRISM probabilistic-spatial quality control 
system (PRISM PSQC System).  It uses climate 
mapping technology and climate statistics to provide a 
continuous, quantitative confidence probability for each 
observation, estimate a replacement value, and provide 
a confidence interval for that replacement.   System 
development followed the following principles: 

 
� Spatial consistency with nearby observations is a 

useful and powerful proxy for observation validity 
� While observations of unknown validity must be 

used to determine the validity of other observations, 
the weight of evidence should isolate the truly 
inconsistent observations   

� Estimates of data validity should be continuous and 
quantitative 

� A prediction, and a accompanying error estimate, 
should be made for each observation, allowing the 
user to choose which to use, based on the 
application 

� The system must be fully automated for eventual 
use in near real-time QC 

 
Initial tests of the system in western Oregon have 

produced informative results.  Detailed examples of the 
performance of the PRISM PSQC System are available 
from Gibson et al. (2004).   As work progresses, many 
questions will arise concerning the strengths and 
weaknesses of the system, and how it compares to 
traditional QC systems.  Examples of some of the 
issues and questions we are currently considering 
include: 

 
� A probabilistic QC system can, if desired, transfer 

the decision to “toss or keep” an observation to the 
user.  However, it must be accompanied by 
guidelines on how the user should make these 
decisions.  As a first effort to develop such 
guidelines, we plan to compare the PRISM PSQC 
results to the “toss or keep” decisions made by the 
Western Regional Climate Center’s sophisticated, 
but deterministic, spatial QC system for SNOTEL 
temperature.   

 
� If continuous and probabilistic QC systems are 

needed to address the needs of electronic 
observing systems, are they also useful for manual 
observing systems?  If not, can they be modified or 
hybridized to be more useful?  

 
� By using a probabilistic approach, the PRISM 

PSQC System accounts for PRISM’s ability to 

predict in a station’s absence.  But highly unusual 
situations occur in which the observation appears to 
be valid, but also spatially inconsistent (see Gibson 
et al., 2004 for an example).  How far can the 
assumption be taken that spatial inconsistency 
equates with validity? 

 
� Spatial QC depends on “long-term” information on 

the ability of PRISM to predict in a station’s 
absence.  This ability can be affected by the 
presence or absence of nearby station 
observations.  How do we account for 
intermittencies in station reporting, especially if we 
are to operate the system in near real-time, where 
observations are often missing?   

 
� Spatial QC mixes observations from different 

networks with sometimes very different reporting 
protocols.  The most obvious of these is the COOP 
network’s variable definition of an observation day.  
Differences between a 4 PM COOP observation 
time and a nearby midnight SNOTEL measurement 
time will produce occasional but persistent spatial 
inconsistencies, as will two COOP stations with 
different observation times.  How can these effects 
best be minimized for daily QC purposes?   

 
� Non-spatial validity tests can also be incorporated 

into the probabilistic QC system.  For example, the 
probability of a station “flat-lining” (having the same 
observation repeated) for a specified period of days 
can be calculated and subjected to the same p-
value calculation.  Another example is the 
probability of a station exceeding a given change in 
temperature from one day to the next.  Work to 
incorporate such non-spatial tests is underway.   

 
� OP, PP, RP, and SP are calculated under the 

assumption that O, P, R, and S are normally 
distributed.  This is not always the case.  Is there a 
need to consider using non-parametric statistical 
tests?  What are the ramifications of doing this?   



Table 1.  Variables calculated by the PRISM PSQC system. 

Abbreviation Description  Notes 
  PRISM Variables   

          O Observation  Observed station value on a given day 
    P Prediction  “Best” PRISM spatial prediction for a station, on 

a given day, that most closely matches the 
observation after systematic deletion of 
surrounding stations, individually and in pairs 

    R Residual (P-O)  Difference between the prediction and the 
observation for a station on a given day 

    S Regression standard 
deviation  

Standard deviation of the PRISM regression 
function for a station on a given day  

  Summary Statistics   

    osO ,  “Long-term” mean 
and standard deviation 
of observation  

Mean and standard deviation of the observation 
for a given day of the year, calculated as the mean 
of observations for a station centered on the 
current day, +/- 15 days and +/- 2 years 

    psP ,  “Long-term” mean 
and standard deviation 
of prediction  

Same as above, except for prediction  

    rsR ,  “Long-term” mean 
and standard deviation 
of residual 

Same as above, except for residual 

    ssS ,  “Long-term” mean 
and standard deviation 
of regression standard 
deviation  

Same as above, except for regression standard 
deviation 

Probability Statistics   
    OP Observation 

probability   
P-value*100 from a t-test comparing O to the 

distribution of O, parameterized by osO , .  

Represents the percent of observations within O-
Obar of the mean.   Measure of how unusual the 
observation is compared to others at this station at 
the same time of year 

    PP Percent of 
predictions within P-Pbar 
of the mean 

Same as above, except for prediction 

    RP Percent of residuals 
within R-Rbar of the 
mean 

Same as above, except for residual 

    SP Percent of standard 
deviations within S-Sbar 
of the mean 

Same as above, except for regression standard 
deviation 

    CP Confidence 
probability 

Overall confidence probability for the station 
observation on a given day.  Currently, CP=RP 
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