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ABSTRACT

This paper presents and evaluates a method for the construction of long-range and wide-area temporal
spatial datasets of daily precipitation and temperature (maximum and minimum). This method combines
the interpolation of daily ratios/fractions derived from ground-based meteorological station records and
respective fields of monthly estimates. Data sources for the described implementation over the contermi-
nous United States (CONUS) are two independent and quality-controlled inputs: 1) an enhanced compi-
lation of daily observations derived from the National Climatic Data Center digital archives and 2) the
Parameter–Elevation Regressions on Independent Slopes Model (PRISM) maps. The results of this study
show that this nonconventional interpolation preserves the spatial and temporal distribution of both the
PRISM maps (monthly, topography-sensitive patterns) and the original daily observations. Statistics of a
preliminary point comparison with the observed values at high-quality and independent reference sites
show a reasonable agreement and a noticeable improvement over the nearest station method in orographi-
cally sensitive areas. The implemented datasets provide daily precipitation and temperature values at
2.5-min (around 4 km) resolution for 1960–2001. Combining seamless spatial and temporal coverage and
topographic sensitivity characteristics, the datasets offer the potential for supporting current and future
regional and historical hydrologic assessments over the CONUS.

1. Introduction

Precipitation and temperature are driving variables
in the simulation of physical and biological processes
occurring in the landscape. Consequently, modeling

evaluations of a growing number of hydrological and
environmental issues are increasingly requiring reliable
areal (area average) meteorological datasets as well as
practical methods for their generation. The availability
of these datasets with adequate spatial and temporal
resolution is particularly critical when modeling appli-
cations are designed over large spatial and temporal
domains.

This is the case of the Conservation Effects Assess-
ment Project (CEAP; Mausbach and Dedrick 2004), a
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program initiated by the U.S. Department of Agricul-
ture (USDA), which includes outlooks for water qual-
ity at the watershed as well as the national scale. Topics
of CEAP are agricultural conservation practices, which
are recognized as reducing local losses of soil, nutrients,
pesticides, pathogens, and other biological and chemi-
cal materials from agricultural lands, as well conserving
natural resources, enhancing the quality of the agroeco-
system and wildlife habitat. The core of the CEAP’s
assessment approach binds hydrology-based software
models simulating on a daily time step and a number of
supporting digital databases to derive annual estimates
of the agricultural conservation benefits obtained by
the program for the nation. The spatial domain is the
conterminous United States (CONUS), which is going
to be segmented, at the first level, in a set of composing
hydrologic areas, such as the 18 major water-resources
regions out of the overall 21 as defined by the U.S.
Geological Survey (USGS; Seaber et al. 1987). The cur-
rently established modeling spatial framework is sup-
ported by the Hydrologic Unit Modeling for the United
States (HUMUS) databases. HUMUS (Arnold et al.
1998) includes databases on land use and nonpoint and
point sources of pollution populated in correspondence
to each elementary unit of the current watershed
framework, the hydrologic unit codes (HUC) polygons,
also named 8-digit cataloging units, developed by the
USGS (Seaber et al. 1987).

The large spatial domain of the application project
prevents using detailed onsite collection of near-surface
data, which are only available for traditional large sta-
tion networks and only recently from remote sensors
(radars and satellites). Although a source of valuable
information, with extended geographic distribution, du-
ration of record, frequency of observations, and stan-
dardized measurement techniques, station network
data still requires methods for the spatial generalization
of point observations across application domains and
remote sites. Much of the literature concerning the dis-
tribution of meteorological fields over large areas fo-
cuses on long-time-step average (e.g., seasonal, annual,
monthly), satellite-based, global spectrum and low-
resolution estimates (Krajewski et al. 2000; Meneghini
et al. 2001), whereas short-time-step (e.g., hour,
minute) radar precipitation and high-resolution esti-
mates are only recently available (Fulton et al. 1998).
Our objectives appertain to the spatial interpolation of
daily meteorological fields (precipitation and tempera-
ture) from historical station networks data, which also
has mainly dealt with long-time-step average estimates.
A wide range of suitable interpolation methods, from
simple (e.g, nearest neighbors, inverse distance) to so-
phisticated statistical (e.g., spline, kriging), have been

developed and tested (Tabios and Salas 1985; Seo et al.
1990; Kurtzman and Kadmon 1999; Xia et al. 2001),
mainly challenging the more severe variability of the
precipitation fields (Hubbard 1994). These methods,
which are mainly based on a weighting and/or geostatis-
tical combination of point values from station records,
when applied to existing networks do not provide ex-
plicit evaluation of areal estimates, in particular over a
range of elevation zones. Issues arise because the ma-
jority of measurements are traditionally taken from sta-
tions located at low elevations and with a very sparse
coverage of the territory (Daly 2002; Groisman and
Legates 1994). Precipitation assessment improvements
have been obtained using supplementary information,
mainly introducing topographic data into the basic in-
terpolation or in more elaborate methods (Garen et al.
1994; Piper and Stewart 1996; Pardo-Iguzquiza 1998;
Prudhomme and Reed 1999; New et al. 1999; Daly et al.
1994, 2002; Hijmans et al. 2005). In general, the im-
provements were achieved in zones where the spatial
density of stations allowed establishing satisfactory re-
lationships with the topography and/or for the estima-
tion of annual and monthly amounts. Challenges are
presented in particular by the variability of precipita-
tion fields on a short time step, which have stimulated
the development of methods combining radar and rain
gauge measurements (Steiner et al. 1999), but which are
not suitable for retrospective analysis because of the
recent availability of the remote sensing data. To over-
come these various issues (e.g., historical and regional
coverage, topographic adjustment) and limitations
(e.g., station location and density, variability for daily
time step) daily gridded estimates data have been ob-
tained using techniques based on the additional identi-
fication of meteorological patterns before the applica-
tion of a spatialization procedure. To this end Thornton
et al. (1997) introduced a daily precipitation occurrence
algorithm, as a precursor to the prediction of daily pre-
cipitation amount, which was obtained using the spatial
convolution of a truncated Gaussian weighting filter
with the set of station locations. Courault and Mones-
tiez (1999) proposed a conditioning approach of air
temperature data taking into account the atmospheric
circulation patterns identified from outputs of large-
scale forecast models, before interpolating using an or-
dinary kriging. Hewitson and Crane (2005) conditioned
a gridding inverse distance interpolation of daily pre-
cipitation to the procedural identification of the daily
synoptic forcing state of the recording stations based on
the identification of a spatial pattern of wet/dry condi-
tions.

This paper describes the details and the implemen-
tation of a pattern-based method for the development
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of daily total precipitation and temperature (daily
maximum and minimum) gridded datasets, which are
ultimately needed to meet the following modeling re-
quirements: 1) seamless spatial coverage of the entire
project application area (the CONUS), 2) representa-
tion of sequential daily values, 3) serially complete over
an extended historical period, 4) an adequate resolu-
tion to support the applied hydrologic models at the
current (and most probably becoming finer in the near
future) spatial hydrologic segmentation, and 5) provi-
sion of orographic adjustment. The first requirement is
dictated by the geographic scope of the model simula-
tions along with the necessity, also related to the rest of
the requirements, of their calibration using observed
data (e.g., stream flows, sediment loads), which are ex-
pected to be correlated to the implementation of the
conservation practices, thereby excluding the usage of
generated weather records. In addition, as previously
described, the model simulations require daily input
time series. Their historical extent and spatial and tem-
poral variability are fundamental for the achievement
of the project goals and any water resource manage-
ment plan. The inclusion of the strong variation of cli-
mate with elevation is obviously important and in ad-
dition provides background data for the concurrent es-
timation of the atmospheric deposition loads.

The remainder of this paper is subdivided into four
sections. The first section describes the conceptual ap-
proach and the data sources input to the method imple-
mented on the CONUS. The second section describes
the method with specific references to the implemen-
tation data. The third section reports the results of basic
verifications of the output data. The last section dis-
cusses and summarizes the main results.

2. Gridding approach and data sources

In developing our datasets, we embraced the concept
that the station observations are the true values on a
surface component dominated by the prevailing
weather systems determined by large-scale synoptic
forcing (atmospheric pattern) acting at the monthly
base, mixed with a modulating daily component de-
termined by local forcing. For the precipitation field
P(x, y, t), the magnitude of the first component con-
ceptually was considered to be equivalent to the cumu-
lative topography-based sum Pc(x, y, t) modulated by a
second component, such as pointwise time-varying ra-
tios Pr(x, y, t) defined by the daily pattern, such as

P�x, y, t� � Pc�x, y, t� � Pr�x, y, t�; �1�

Pr(x, y, t) was derived from the interpolation of ratios
calculated using station records and the procedure de-
scribed in the next section. In place of Pc(x, y, t), for

each month we used the distinct Parameter–Elevation
Regressions on Independent Slopes Model (PRISM;
Daly et al. 1994, 1997, 2002) cumulative precipitation
fields at the full resolution (4 km). This decomposition–
interpolation–composition approach was introduced by
Widmann and Bretherton (2000), and used in other
linked research efforts (Maurer et al. 2002; Hamlet and
Lettenmaier 2005) only for coarse griddings (1⁄8° spatial
resolution and larger) on which the PRISM monthly
fields were averaged and Pr(x, y, t) was normalized be-
fore the interpolation. In our implementation we use
the full-resolution (4 km) and also introduce a similar
approach to obtain daily temperature fields (maxi-
mum and minimum), decomposed in its monthly mean
T(x, y, t) and additive daily anomaly Ta(x, y, t), such as

T�x, y, t� � T�x, y, t� � Ta�x, y, t�. �2�

The anomaly-average ratio Tr(x, y, t) was defined as

Tr�x, y, t� � Ta�x, y, t� �T�x, y, t�; �3�

Tr(x, y, t) was derived from the interpolation of frac-
tions calculated using station records and the procedure
described in the next section. In place of T(x, y, t), for
each month we used the distinct PRISM average tem-
perature (maximum and minimum) fields at the full
resolution (4 km) that combined with Tr(x, y, t) allowed
the spatial distribution of the daily values representing
the estimated daily fields (see implementation details
below).

A deterministic interpolation method [the inverse-
distance-weighted (IDW) method; Watson and Philip
1985] was implemented to specifically assign fraction
values to missing locations based on the surrounding
measured values. IDW, although lacking in optimality
criteria, is in general recognized as more appropriate
than the classic nearest-neighbor method (Thiessen
1911), which in turn introduces discontinuous surfaces
and is traditionally used for large-area hydrological as-
sessments. For a given estimation point, the IDW tech-
nique provides a set of weights that sum to unity and
that are inversely related to the distances to the data
points. The IDW(x, y) estimation at (x, y) is a linear
combination of the observed values, such as

IDW�x, y� � �
j

wj f�xj , yj�, �4�

with the weights wj defined as follows:

wj �
dj

�p

�
k

dk
�p

, �5�

where dk is the distance from (x, y) to (xk, yk) and
f(xk, yk) is the observed value at (xk, yk); p is a positive
real number that influences the character of the inter-
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polation, from local to global: the higher the value is,
the stronger is the influence of the closer sample points.
Here p � 2 has been used (inverse square interpola-
tion), which still determines a local dominating weight
to a particular measurement when it is located near the
estimation point, and in addition returns a smooth tran-
sition of the interpolated surface (the first derivative is
zero at the data point). The input set of data points
(stations) for calculating each interpolated point have
been limited to 12. Using IDW, the range of interpo-
lated values is limited to the range of the measured
variable. In general this is considered a major disadvan-
tage because the interpolation is not fully responsive to
local trends (e.g., for unsampled hill tops and valley
bottoms). The importance of this issue is minimized
here since the fractional values are interpolated and the
local trends are accounted for at the monthly level.

The implementation for the CONUS used the fol-
lowing precompiled datasets: 1) corrected and quality-
controlled National Weather Service Cooperative Ob-
server (COOP) daily observations from the National
Climatic Data Center (NCDC) and 2) the PRISM
monthly grid estimates, both of which are here briefly
described along with the national segmentation cur-
rently adopted in the project.

a. Daily precipitation and temperature data and the
hydrologic units map

The dataset used in this project is a serially complete
(no missing values) daily total precipitation and maxi-
mum–minimum temperature time series developed ini-
tially for the western United States (Eischeid et al.
2000) and extended to the entire United States. It was
compiled, purging and/or correcting extreme errors
and/or missing values traditionally included in observa-
tion records, creating quality-controlled, serially com-
plete data in support of natural resource modeling. The

source records were from the COOP stations: namely
the NCDC Summary of Day (TD3200) data. In the
creation of the final serially complete datasets the fol-
lowing refinement steps were applied: 1) quality control
that identifies unreliable reporting stations and records
that had been flagged as missing values; 2) replacement
of missing daily values based on the use of simultaneous
values at nearby stations along with six different, sea-
sonally and geographically dependent, methods of spa-
tial interpolation to calculate estimated values for those
specific days (Eischeid et al. 1995); and 3) a final data-
consistency check and eventual correction.

The total numbers of distinct stations in the serially
complete dataset, operative in the period 1895–2001,
are 12 540 and 7998, respectively, for precipitation and
maximum–minimum temperature. The number of op-
erative stations and their distribution results change
over the years. Our target period (1960–2001) avoids
large temporal data inhomogeneities in the COOP data
prior to 1950 that were noted by Hamlet and Letten-
maier (2005). These persistent temporal inhomogene-
ities are due to undocumented changes in stations
and station locations. To limit this problem, whereas
Eischeid et al. (2000) retained the stations with at least
10 yr of data and with no more than 48 missing months,
a procedure has been applied to remove a few spatially
redundant stations (with the same coordinates), retain-
ing only the longest recording station. The numbers of
distinct stations recording at any time within our target
period (1960–2001) are 11 680 and 7565 for precipita-
tion and temperature, respectively. Figures 1a,b show
the temporal variation of the number of the measuring
COOP stations. The spatial distribution of the stations
is shown in Figs. 2a,b (maximum and minimum tem-
perature stations share identical locations) with refer-
ence to the USGS water-resources regions shown in
Fig. 2c.

FIG. 1. Variation of the number of COOP stations measuring (a) precipitation and (b) temperature in the period 1960–2001.
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The supporting digital spatial dataset used in this
project is the 1:250 000-scale HUC (Steeves and Nebert
1994), which counts 2150 HUCs for the entire United
States. After some minor simplifications and aggrega-
tions, the revised dataset contains 2108 units. Figures
3a,b show for precipitation and temperature, respec-
tively, the distribution (average and standard devia-

tion) of the area associated with each station and of the
number of stations per HUC in each of the 18 water-
resources regions in the CONUS. There are 82 HUCs
without precipitation stations. These HUC polygons
are shaded in Fig. 4a. The most precipitation stations
(43) are located within HUC number 6010105, located
in region 6, across Tennessee and North Carolina. HUC

FIG. 2. Spatial distribution of the (a) 11 680 COOP stations measuring precipitation and (b) 7565 COOP
stations measuring temperature in the period 1960–2001. (c) USGS water-resources regions in the CONUS.
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number 18070106, located in region 18, in southern
California, has the smallest mean area associated with
each station (59.75 km2). These HUC polygons are also
highlighted in Fig. 4a. There are 141 HUCs without
temperature stations. These HUC polygons are shaded
in Fig. 4b. The most temperature stations (29) are lo-
cated within HUC number 3090202, located in region 3,
in southern Florida. HUC number 18070106, located in
region 18, in northern California, has the smallest mean
area associated with each station (96.22 km2). These
HUC polygons are also highlighted in Fig. 4b.

b. PRISM grids

The PRISM climate mapping system was used to cre-
ate the gridded climate datasets described in this study.
PRISM is a knowledge-based system that uses point
data, a digital elevation model (DEM), and many other
geographic datasets to generate gridded estimates of
monthly and event-based climatic parameters (Daly et
al. 1994, 2001, 2002, 2003; Daly 2006). PRISM has been
used extensively to map precipitation, temperature,
dewpoint, weather-generator parameters, and other cli-
mate elements over the United States, Canada, China,
and other countries (USDA-NRCS 1998; Daly and
Johnson 1999; Johnson et al. 2000; Plantico et al. 2000;
Daly et al. 2001, 2003; Gibson et al. 2002; NOAA-
NCDC 2002; Zhu et al. 2003; Daly and Hannaway 2005;
Hannaway et al. 2005; Simpson et al. 2005).

PRISM adopts the assumption that for a localized
region, elevation is the most important factor in the
distribution of temperature and precipitation (Daly et
al. 2002). PRISM calculates a linear climate–elevation
relationship for each DEM grid cell, but the slope of

this line changes locally with elevation as dictated by
the data points. Beyond the lowest or highest station,
the function can be extrapolated linearly as far as
needed. A simple, rather than multiple, regression
model was chosen because controlling and interpreting
the complex relationships between multiple indepen-
dent variables and climate is difficult. Instead, weight-
ing the data points (discussed later) controls the effects
of variables other than elevation. The climate–eleva-
tion regression is developed from x, y pairs of elevation
and climate observations supplied by station data. A
moving-window procedure is used to calculate a unique
climate–elevation regression function for each grid cell.
The simple linear regression has the form

Y � �1X � �0, �6�

where Y is the predicted climate element; �1 and �0 are
the regression slope and intercept, respectively; and X
is the DEM elevation at the target grid cell.

Stations surrounding the target grid cell provide the
X and Y pairs for the regression function. Upon enter-
ing the function, each station is assigned a weight that is
based on several factors. In the general PRISM formu-
lation, the combined weight of a station is a function of
distance, elevation, cluster, vertical layer, topographic
facet, coastal proximity, and effective terrain weights,
respectively. Thus, the combined weight W of a station
is a function of the following:

W � f�Wd, Wz, Wc, Wp, Wl, Wf , We�, �7�

where Wd, Wz, Wc, Wp, and We are the distance, eleva-
tion, cluster, coastal proximity, vertical layer, topo-
graphic facet, and effective terrain weights, respec-

FIG. 3. Average and standard deviation of the area of each station and of the number of stations per HUC measuring (a)
precipitation and (b) temperature in the period 1960–2001 in each of the 18 regions of the CONUS.
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tively. Distance, elevation, and cluster weighting are
relatively straightforward in concept. A station is down-
weighted when it is relatively distant or at a much dif-
ferent elevation than the target grid cell, or when it is
clustered with other stations (which leads to overrep-
resentation). Coastal proximity weighting is used to de-
fine gradients in precipitation or temperature that may
occur because of proximity to large water bodies (Daly
et al. 2002, 2003; Simpson et al. 2005). A description of
a trajectory model developed to estimate coastal prox-
imity for Puerto Rico is provided in Daly et al. (2002);

this model is routinely used in the United States. Ver-
tical layer weighting is used to simulate situations
where rapid changes, or even reversals, in the relation-
ship between climate and elevation are possible (i.e.,
temperature inversions). When the potential for such
situations exists, the climate stations entering the re-
gression are divided into two vertical layers, and regres-
sions run on each separately. Layer 1 represents the
boundary layer, and layer 2 represents the free atmo-
sphere above it (Daly et al. 2002). Topographic facet
weighting accounts for discontinuities in the climate

FIG. 4. Hydrologic units map of the United States: Highlighted are the HUCs without a station measuring (a) precipitation and (b)
temperature in the period 1960–2001. In (a), HUC 6010105 has the highest number and HUC 18070106 has the smallest mean associated
area; in (b), HUC 3090202 has the highest number and HUC 18070106 has the smallest mean associated area.
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field caused by terrain breaks (e.g., rain shadows). A
topographic facet is a contiguous terrain slope with a
common orientation, delineated at a variety of scales,
from the major leeward and windward sides of large
mountain ranges, to north- and south-facing hill slopes.
At each grid cell, the model chooses the topographic
facet scale that best matches the data density and ter-
rain complexity, and assigns the highest weights to sta-
tions on the same topographic facet (Daly et al. 2002).
Effective terrain weighting accounts for differences in
the ability of terrain features to enhance precipitation
through mechanical uplift of moisture-bearing air. Fea-
tures having relatively steep, bulky profiles typically
produce strong precipitation–elevation relationships;
while low, gently rolling features have weaker relation-
ships (Daly 2002). Detailed discussions of these weight-
ing functions, and typical PRISM parameter values
used in the CONUS, are available from Daly et al.
(2002) and Daly (2002). [Many of the papers cited here,
as well as a downloadable presentation on PRISM,
were available from the PRISM Internet site at http://
prismclimate.org.]

The development of the monthly time series grids
used in this study was performed in two phases. The
first phase involved the period 1895–1997 and was a
collaborative effort between Oregon State University
(OSU), the National Center for Atmospheric Research
(NCAR), and NCDC. NCDC provided all available
COOP station data, including those from the Historical
Climate Network (HCN), and pre-1948 data digitized
by the Midwestern Climate Center. These sources were
supplemented by data from the USDA–Natural Re-
sources Conservation Service Snowpack Telemetry
(SNOTEL) network, as well as those from various local
networks. A two-tiered spatial quality-control (QC)
system developed by OSU was applied to the station
data. The QC system identified metadata errors, includ-
ing station location and elevation problems, as well as
spatial inconsistencies in the monthly data (Gibson et
al. 2002). NCAR used spatial statistical tools to create
serially complete monthly data for all stations for the
entire 1895–1997 period (Johns et al. 2003). At OSU,
PRISM was parameterized for optimal performance by
applying a statistical version of the model that deter-
mines optimal model performance from a jackknife
cross-validation error analysis. Run for a subset of
years and months in an iterative fashion, and a robust,
universal parameterization sufficient for all months and
years was obtained. PRISM was then applied to the
CONUS in three overlapping regions: western, central,
and eastern; these regions were then merged together
into a single grid with a resolution of 2.5 arc min (	4
km). The resulting grids were examined for accuracy

and reasonableness by OSU, NCAR, and NCDC. The
grids served as the basis for the Vegetation–Ecosystem
Modeling and Analysis Program bioclimatic dataset
(Kittel et al. 2004), used in U.S. Global Change Re-
search Program assessments.

Immediately after the release of this dataset, there
were calls for the dataset to be updated to a more cur-
rent year. The second phase of development involved
developing an operational system for producing
monthly temperature and precipitation grids from 1998
to the present, and extended on a near–real time basis
(Daly et al. 2004). OSU worked in partnership with the
Western Regional Climate Center, which provided
near–real time COOP and National Weather Service
Automated Service Observing System station data.
These were supplemented with data from SNOTEL,
other national networks, and regional mesonets such as
those operating in Oklahoma, Minnesota, and Texas.

PRISM mapping of near–real time data required an
approach slightly different than the standard modeling
procedure. The amount of station data available for
recent months is always much less than that available
for the high-quality climatological PRISM precipitation
and temperature maps, such as the expert-reviewed
PRISM 1961–90 mean precipitation maps (USDA-
NRCS 1998). This meant that mapping climate in re-
cent months using available data only would sacrifice a
significant amount of the spatial detail present in the
long-term mean climate maps. Results from a pilot
study showed that the PRISM 1961–90 mean monthly
climate maps were excellent predictors of a given
month’s climate, much better than elevation, which is
typically the predictor variable in PRISM applications.
The relationships between 1961–90 mean monthly and
individual monthly climate values were strong because
much of the incorporation of the effects of various
physiographic features on climate patterns had already
been accomplished through the careful creation of the
1961–90 grids. This method is in common use, and was
termed “climatologically-aided interpolation” (CAI) by
Willmott and Robeson (1995).

PRISM was parameterized to use existing 1961–90
mean monthly grids of minimum and maximum tem-
perature and precipitation as the predictor grids in the
interpolation of these climate elements for recent
months. The PRISM weighting functions for distance,
elevation, topographic facet, atmospheric layer, oro-
graphic effectiveness, and coastal proximity were all
retained. This allowed the moving-window regression
function of observed monthly climate with the 1961–90
mean to be interpolated with sensitivity to physi-
ographic factors, such as might occur when a month has
below-normal temperatures along the coast and above-
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normal temperatures inland. PRISM was run in this
fashion for the period January 1998–December 2002 to
complete a seamless time series from 1895 to 2002.
Starting in 2002, PRISM has been run operationally to
produce grids of the most recent month, as well as pre-
vious months for which there are new station data avail-
able. When a new version of a monthly grid is pro-
duced, it replaces the old one. The resulting process is
akin to a several-month temporal moving window of
modeling and remodeling of climate elements. Each
month typically goes through about 6–9 iterations, de-
pending on the length of time for all of the COOP data
to become available in final form. Occasionally it is
necessary to update a month in the more distant past if
new data or a new version of the present data becomes
available. A major update of the entire gridded time
series is expected in 2008. The update will use a con-
sistent CAI interpolation method for all years, using
new, 1971–2000 PRISM mean climate grids as the pre-
dictors. When completed, the resulting dataset will be
available for download from the PRISM Internet site
(http://prismclimate.org).

3. Implementation

Daily precipitation and maximum–minimum tem-
perature spatial datasets were created by linking and
combining the data sources outlined above (daily sta-
tion records and PRISM monthly grids). The imple-
mentation, illustrated in Fig. 5 and conceptually de-
scribed in section 2, relies on the input PRISM grids to
reproduce the climate patterns as well as to fasten the
accumulated values on the monthly base (total precipi-
tation and average daily temperatures). The linkage is

established by defining, for each station in the database
and for each day of the analyses, the daily fractional
contribution to the total monthly precipitation and the
fractional daily anomaly with respect to the average
monthly values for daily maximum and minimum tem-
perature (see first and second procedures below). An
IDW interpolation function is applied to expand these
point-sample ratios (fractional anomalies) over the spa-
tial scope, such as the CONUS territory (see third pro-
cedure below). The spatial combination (see fourth
procedure below) of the resulting grids with the PRISM
grids returns the new spatial dataset at the daily time
step, which is expected to be consistent with the
monthly precipitation totals (monthly average daily
temperatures) provided by the PRISM grids. An addi-
tional spatial function was applied to obtain records at
the HUC level (see fifth procedure below).

The method was applied to the project target period
(1960–2001) by incorporating five specific procedures.
The first procedure is processing of the serially com-
plete station records. This procedure included the fol-
lowing tasks: 1) identification and extraction of the sta-
tions operating any time within the target period (see
Figs. 2a,b), 2) flagging of the station days on which the
respective station had not been operative (this is for the
days outside the gapless station-specific serially com-
plete period), and 3) for each selected precipitation sta-
tion computation of the monthly precipitation total
(called monthly Pc) and ultimately the daily ratio
(called daily Pr) of the monthly total precipitation. This
computation is done as follows:

daily Pr � daily P�monthly Pc, �8�

FIG. 5. Scheme of the input–output data elaboration.
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where “daily P” is daily recorded precipitation. For
each selected temperature station, monthly average
“monthly T” is calculated (independently for maximum
and minimum temperature) as

monthly T � �
i�1

N

daily Ti �N, �9�

where “daily Ti” is daily recorded temperature at the
day i and N is the number of days in the respective
month. The daily anomaly-average ratio “daily Tr”
from the average monthly temperature is calculated as
follows:

daily Tr �
daily T � monthly T

monthly T
. �10�

To avoid problematic zeros, all temperature computa-
tions were operated on a shifted dominion in which a
value equal to 100 was added to all of the variables.

The second procedure is to arrange the data by date.
Derived data were reorganized into a comprehensive
sequence of daily records, such as a database table.
Each record (line of the database) contained all station
data for a single day. Data included the daily ratios, the
anomalies, and flags calculated for all available stations
(see the second task of procedure 1). This time-index-
ing procedure was made and applied to facilitate the
computations that follow.

The third procedure is a sequence of interpolations
for the time series of daily ratios. Following geocoding
of the station location points, this procedure provided a
day-by-day sequential interpolation of the daily ratios
(see procedure 2), dynamically associated only with the
stations operative on the currently analyzed day. The
resulting IDW continuous surfaces are the daily grids
(raster data) that cover the target period and represent
the spatial extension from the sampled locations to all
the locations where measures are not available of the
daily ratios on the monthly bases. The spatial analysis
environment used for this procedure was adopted from
the PRISM datasets: namely, a geographic, World Geo-
detic Spheroid 1972 (WGS72) coordinate system, and
the 2.5-min (	4 km) cell resolution.

The fourth procedure involves daily spatial combina-
tion. This procedure included the application of map
algebra functions for combining the surface interpola-
tion maps (ratios; see procedure 3) and the respective
PRISM monthly grids. The map algebra functions com-
bine data on a cell-by-cell basis to derive the final target
information grid dataset. In this way, operating on each
cell, the target daily precipitation grid was obtained as
the result of the following combination:

daily P�i � � daily Ir�i � � monthly Pc�i �, �11�

where daily P(i) is precipitation grid at day i, daily Ir(i)
is grid of IDW interpolated station ratios [see Eq. (8)]
at day i, and monthly Pc(i) is PRISM total precipitation
grid for the respective month. The daily temperature
grid (maximum and minimum) was obtained using the
following combination:

daily T�i � � monthly T�i � � daily Ir�i � � monthly T�i �,

�12�

where daily T(i) is temperature grid at day i, daily Ir(i)
is grid of IDW interpolated station anomaly-average
ratios [see Eq. (10) deviation from the monthly aver-
age] at day i, and monthly T(i) is PRISM average tem-
perature grid for the respective month.

The fifth and last procedure is to create a hydrologic-
unit average. A further step was required to provide the
CEAP models with daily time series over each compu-
tation unit (HUC watersheds). For this aim, each of the
previous grids was spatially averaged (simple average
of all HUC-contained grid cells) within each HUC.

The daily grids (precipitation and maximum–mini-
mum temperature in the period 1960–2001 at the 2.5-
min resolution) and, secondary, the daily records stored
for each HUC polygon in the national framework are
the results of the implementation. These results were
then verified as described in the next section.

4. Verification

Two kinds of tests were performed on the created
datasets: the first one verifies the overall areal consis-
tency with the reference PRISM grids, and the second
one includes point-based comparisons between pre-
dicted and observed values at selected COOP and ref-
erence station locations.

a. Areal consistency

The areal (average area) consistency was analyzed on
the 2108 HUC polygons of the simulation framework
used in the CEAP project as well as on each elementary
4-km cell. In each of these geographic features (HUC
and cell), the newly generated datasets and the monthly
PRISM grids were accumulated in our target period,
equivalent to 42 yr, 504 months, or 15 341 days.

For precipitation, the difference in percentage (PRISM
subtracted from predicted) is summarized for the 18
large basins (shown in Fig. 2c) in Fig. 6a. In general, the
resulting gridded values have a tendency to underesti-
mate slightly the PRISM accumulated values (mean dif-
ference less than 1%), with higher gaps (mean negative
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difference around 2%–3%) seen in regions 13, 15, and
16. A linear regression (the plot is not shown) between
the accumulated monthly PRISM records (independent
variable) and the accumulated daily records predicted
(dependent variable) in all the HUCs returned a cor-
relation coefficient R equal to 0.99 and a slope very
close to 1. Maps of the annual average PRISM and of
the predicted precipitation grids are shown side by
side in Figs. 7a and 7b. The two maps show a general
agreement in terms of spatial distribution, patterns, and
range of values. The cell-by-cell difference map
(PRISM subtracted from predicted, as percentage of
PRISM) is depicted in Fig. 7c. This figure confirms a
general agreement between the predicted and the
PRISM datasets. A number of spots where the gaps
appear more pronounced are visually noticeable and
more frequent the arid regions 13, 15, and 16, as pre-
viously noted. A closer comparison of the monthly
records relative to the COOP stations and the PRISM
fields for these and other sensitive zones (i.e., those
located in region 6), revealed local divergences, with
PRISM values in general greater than the respective
station ones.

For temperature, the average daily differences (PRISM
subtracted from the predicted) are summarized for the

18 large basins (shown in Fig. 2c) in Fig. 6b (maximum
temperature) and Fig. 6c (minimum temperature). In
general the resulting gridded values resemble the
PRISM accumulated values on the HUC areas within
each region. This is also confirmed by the linear regres-
sions (the plots are not shown) between daily average
temperatures (maximum and minimum) from the
PRISM records (independent variable) and the pre-
dicted daily records predicted (dependent variable) in
all the HUCs, which returned in both cases a correla-
tion coefficient (R) very close to 1 and a slope equal to
1. Similar to the precipitation, a cell-by-cell analysis was
obtained subtracting the daily average grid obtained
from the PRISM maps from the daily average obtained
using the predicted grids. The results (the maps are not
shown) show less than (1/10)°C of gap across the coun-
try, both for the maximum and minimum daily average
temperature.

b. Point-based comparison

The series of predicted grid values were compared
with gauge records collected at COOP and reference
stations. Because of the large amount of data, the find-
ings are summarized to illustrate the general results.
For precipitation, percent bias is defined as

FIG. 6. The average daily difference in each HUC of the 18
USGS water-resources regions in the period 1960–2001 for (a)
predicted accumulated total precipitation minus accumulated
PRISM values as a percentage of PRISM values, (b) predicted
average daily maximum temperature minus average PRISM val-
ues, and (c) predicted average daily minimum temperature minus
average PRISM values.
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FIG. 7. Annual average (a) PRISM and (b) predicted precipitation accumulated in the period 1960–2001. (c) Cell-by-cell difference
between predicted and PRISM average annual precipitation (PRISM subtracted from the predicted) as a percentage of PRISM in the
period 1960–2001.
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bias_% �

�
i�1

N

�Pi � Oi�

�
i�1

N

Oi

� 100

and percent mean absolute error is defined as

MAE_% �

�
i�1

N

|Pi � Oi |

�
i�1

N

Oi

� 100.

Bias, in degrees Celsius for temperature and in milli-
meters for precipitation, is defined as

bias �
1
N �

i�1

N

�Ti � Oi�,

and the mean absolute error, in degrees Celsius for
temperature and in millimeters for precipitation, is de-
fined as

MAE �
1
N �

i�1

N

|Ti � Oi |,

where Pi and Ti are the predicted precipitation and
temperature values (generated gridded values at the
station location) and Oi are observed values (observa-
tions from the station), for the ith time step of the total
N, respectively. In addition, root-mean-square error
(RMSE) and correlation coefficient R, calculated for
each reference station, are reported using daily values.

1) COOP STATIONS

A subset of 1800 stations, 100 stations for each of the
18 USGS regions, was randomly selected from the en-
tire database (see section 2a). Results of the compari-
son between the predicted and observed daily records
are reported in Table 1 for precipitation and Table 2 for
maximum and minimum temperature. Table 1 also re-
ports differences calculated for the total accumulated
volumes for the period 1960–2001.

Table 1 shows that, in general, the newly estimated
precipitation values slightly change and overpredict the
recorded values. The overall estimated precipitation
volumes deviate less than 2% from the observed
records. Only for regions 6, 14, and 15 was this limit
slightly exceeded (2.39%, 2.11%, and 2.13%). Average
R values were all above 0.95 and bias_% was all posi-
tive and within 1.8, except for region 6 (6.2%). Bias
values were all positive and less than 0.1 mm, except for
region 6 (0.21 mm).

FIG. 7. (Continued)
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Noticeable are the MAE_% and MAE values, which
are higher than the respective bias_% and bias values.
The latest note indicates that the predicted and ob-
served values are similar in intensity but with gaps of
storm timing occurrence (rain/no-rain phase) intro-
duced by the contribution of the surrounding stations.
Thus, RMSEs parallel the bias_% values.

Table 2 shows that in general the newly estimated
daily maximum temperature values resemble the ob-
served ones. The R values are all above 0.99, and the
bias absolute values are within 0.15°C, except for re-
gions 1, 14, 15, 17, and 18 (biases are positive and within
0.5°C). MAE values are all within 1°C. Similar results
are obtained for the minimum temperature, with abso-
lute values of bias exceeding 0.15°C in region 17
(0.27°C) and region 18 (0.44°C).

2) REFERENCE STATIONS

The selected stations are not part of the COOP da-
tabase. For precipitation, the data from eight watershed
research stations managed by the U.S. Department of
Agriculture Agriculture Research Service (USDA–
ARS) were used (Slaughter and Richardson 2000). For
maximum and minimum temperature, data from seven
stations, including six ARS stations and one managed
by the University of Georgia, were used. As shown in
Fig. 8, the stations are located in Texas, Idaho, Okla-
homa, and Georgia. Daily records from all of these
stations were readily available over the Internet (ex-
cept for the precipitation stations located in Georgia).
Among the multiple stations available for each water-
shed, stations located at different elevations were se-

FIG. 8. Location map of the study areas, showing the stations used in the point comparison.
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lected. Table 3 shows the main characteristics of the
stations along with the length of the records used in this
study.

We compared the following time series: (a) the val-
ues recorded at the reference stations listed in Table 3,
(b) the records extracted from the derived grids at the
respective locations, and (c) the values recorded at the
respective nearest COOP stations. Table 4 lists the in-
formation of the COOP stations selected for this elabo-
ration, including the calculated distances from the ref-
erence stations. The locations of these stations are also
mapped in Fig. 8. Properties comparisons were calcu-
lated in the respective analyses period indicated in
Table 3. Table 5 and Table 6 report statistics for pre-
cipitation and temperature, respectively, calculated for
each reference station using daily values. Both tables
report two sets of statistics calculated against the ref-
erence data, the first set using the predicted time series
and the second set using nearest COOP station time
series. Their comparison is used in the remainder of the
paper to indicate improvement and/or worsening of the
predicted results. These tables show several elements.

First, both for precipitation and temperature, the pre-
dicted data series reasonably resembles the observed
data. As expected, the temperature statistics are better
than the respective precipitation given the known dif-
ferent degree of variability. Second, in general the pre-
dicted time series is an improvement over the nearest
COOP station values. The R values are increased and/
or other statistics decreased (consider absolute values
of the calculated biases). The precipitation results for
station ID-163x20 stand out: R value increases from
0.44 to 0.6 while the absolute value of bias_% decreases
from 64% to 5%. The verification for this station rep-
resented the most stringent of our tests because of the
significant gap in elevation and distance between the
nearest COOP station and the reference one. Impor-
tant results can also be noted for the similar ID-1763x14
station recording temperatures, which improved all the
statistics. In general, minimum temperature statistics
are slightly better than for maximum temperature sta-
tistics. Third, in areas of limited relief (all of the refer-
ences stations in our study, except those located in
Idaho), the overall statistics calculated on the daily val-

TABLE 3. Names, locations, and other information for the reference stations used in the point-based comparison; P � precipitation,
and T � temperature.

Location Name Length of record/data type Lat Lon Elev (m)

Riesel, TX TX-RG69 1960–2001/P, T 31°28
40�N 96°53
07�W 174
Temple, TX TX-GRL 1960–2001/P, T 31°03
23�N 97°20
55�W 195
Boise, ID, Reynolds Creek ID-076x59 1962–96/P, 1964–96/T 43°12
11�N 116°44
57�W 1207
Boise, ID, Reynolds Creek ID-163x20 1962–96/P 43°04
38�N 116°49
34�W 2170
Boise, ID, Reynolds Creek ID-176x14 1967–96/T 43°03
49�N 116°45
29�W 2097
River Watershed, OK, Little Washita OK-121 1995–2001/P, T 34°57
31�N 97°53
55�W 342
River Watershed, OK, Little Washita OK-131 1995–2001/P, T 34°57
01�N 98°14
01�W 458
Tifton, GA GA-48 1968–2001/P 31°44
42�N 83°44
27�W 145
Tifton, GA GA-08 1968–2001/P 31°29
12�N 83°34
25�W 89
Tifton, GA GA-UGA 1996–2001/T 31°29
39�N 83°31
35�W 120

TABLE 4. Names, locations, and other information for the COOP stations (closest to the reference stations) used in the point-based
comparison; P � precipitation, and T � temperature.

COOP station/data type Lat Lon
Elev
(m)

Reference
station name

Calculated
distance (km)

Marlin 3 NE/P, T 31°19
59�N 96°51
00�W 118 TX-RG69 16.4
Temple/P, T 31°04
59�N 97°19
01�W 193 TX-GRL 4.2
Reynolds/P, T 43°12
00�N 116°45
00�W 1198 ID-076x59 0.3
Silver City 5 W/P (1 Jan 1978–30 Sep 1996) 43°01
08�N 116°49
23�W 1878 ID-163x20 6.5
Reynolds/P (6 Jan 1962–31 Dec 1977) 43°12
00�N 116°45
00�W 1198 ID-163x20 15.0
Silver City 5 W/T (1 Jan 1978–30 Sep 1996) 43°01
08�N 116°49
23�W 1878 ID-176x14 7.3
Reynolds/T (6 Jan 1962–31 Dec 1977) 43°12
00�N 116°45
00�W 1198 ID-176x14 15.2
Chickasha Expt Station/P, T 35°03
00�N 97°55
01�W 331 OK-121 10.3
Apache/P 34°54
00�N 98°21
00�W 390 OK-131 12.0
Anadarko 3 E/T 35°03
43�N 98°11
56�W 356 OK-131 12.7
Ashburn 3 Ene/P 31°43
1�N 83°37
01�W 133 GA-48 12.6
Tifton Expt Station/P 31°28
59�N 83°31
58�W 116 GA-08 4.2
Tifton Expt Station/T 31°28
59�N 83°31
58�W 116 GA-UGA 1.4
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ues show parallel and close results between the pre-
dicted time series and the nearest COOP station ones.
In particular, MAE_% values are generally improved
over the use of the nearest COOP station values but are
still consistently higher than the respective bias_% val-
ues. This is due to the local spatial setting of the closest
COOP station and the reference station (the distance is
reported Table 4), and also of the surrounding stations.
The occurrence of the precipitation (rain/no-rain
phase) at the involved locations might give different
results. The relatively small bias_% values show that
the predicted and observed values are similar in inten-
sity, but the relative high values of MAE_% confirm
gaps of timing occurrence. Given the sparse density of
the COOP stations, primarily the closest station rain/
no-rain phase and secondarily the phase of the sur-
rounding local stations determine the MAE_% calcu-

lated using daily values. This issue is not addressed by
traditional interpolation techniques either.

Yearly and monthly accumulated precipitation and
average temperature at each point were calculated by
summing (for precipitation) or averaging (for tempera-
ture) the individual daily totals/averages. Tables 7 and
8, for precipitation and average temperature, report the
average and other statistics. The prediction of annual
precipitation shows the improvements (predicted vs
closest COOP station) noted on the daily analysis, par-
ticularly for the most critical station (ID-163-x20). Ex-
ceptions are noted for the stations located in Georgia,
which show a slight bias_% increment. Improvements
are generally noted for temperatures as well, with the
exceptions of the slight bias of the minimum tempera-
ture for the stations located in Texas.

In general, monthly statistics follow the pattern of the

TABLE 7. Annual total precipitation statistics for the predicted (second through seventh rows) and for the closest COOP station
(last six rows) vs the observed records at each reference station (first row).

Station statistic TX-RG69 TX-GRL ID-076x59 ID-163x20 OK-121 OK-131 GA-48 GA-08

Avg reference (mm) 918.5 889.0 277.2 1109.7 650.3 752.5 1147.3 1185.4
Avg predicted (mm) 940.3 888.2 268.0 1050.8 723.7 715.0 1110.5 1091.0
Avg diff (mm) 21.8 �0.8 �9.2 �58.9 73.4 �37.4 �36.8 �94.4
Avg ratio 1.035 1.009 0.965 0.955 1.122 0.956 0.976 0.925
Std dev ratio 0.109 0.102 0.090 0.110 0.089 0.132 0.090 0.079
Bias_% 2.37 �0.09 �3.33 �5.30 11.28 �4.98 �3.20 �7.97
MAE_% 8.51 8.33 7.47 9.89 11.28 9.43 7.54 9.21
Avg nearest COOP

station (mm)
961.5 901.2 271.5 395.2 753.2 787.0 1135.5 1181.4

Avg diff (mm) 43.0 12.2 �5.6 �714.4 102.9 34.5 �11.8 �4.0
Avg ratio 1.058 1.021 0.977 0.355 1.160 1.061 0.998 1.001
Std dev ratio 0.131 0.105 0.101 0.111 0.074 0.190 0.155 0.147
Bias_% 4.68 1.37 �2.04 �64.38 15.83 4.59 �1.03 �0.34
MAE_% 10.25 8.00 7.49 64.38 15.83 9.06 10.18 11.19

TABLE 8. Annual average daily temperature (maximum and minimum) statistics for the predicted (second through seventh rows)
and for the closest COOP station (last six rows) vs the observed records at each reference station (first row).

Station statistic

TX-RG69 TX-GRL ID-076x59 ID-176x14 OK-121 OK-131 GA-UGA

Max Min Max Min Max Min Max Min Max Min Max Min Max Min

Reference (°C) 25.0 13.2 25.4 13.5 15.6 2.1 8.9 0.8 22.8 9.8 22.2 10.0 25.0 13.6
Predicted (°C) 25.5 12.7 25.4 12.5 15.6 0.9 13.1 0.8 23.3 9.6 22.5 9.2 25.0 13.0
Diff (°C) 0.5 �0.5 0.0 �1.0 0.0 �1.2 4.2 0.1 0.5 �0.2 0.2 �0.8 0.0 �0.6
Avg ratio 1.022 0.958 1.004 0.929 1.003 0.365 1.482 0.573 1.021 0.98 1.010 0.922 1.0 0.951
Std dev ratio 0.025 0.029 0.026 0.031 0.016 0.405 0.139 1.956 0.017 0.020 0.012 0.019 0.007 0.029
Bias (°C) 0.54 �0.56 0.08 �0.96 0.04 �1.12 4.15 0.06 0.49 �0.20 0.23 �0.79 0.0 �0.67
MAE (°C) 0.70 0.59 0.49 0.98 0.22 1.12 4.15 0.60 0.57 0.23 0.23 0.79 0.13 0.67
Nearest COOP

station (°C)
25.8 13.1 25.2 12.8 16.2 1.3 14.4 1.4 24.0 9.8 22.2 8.6 25.0 13.0

Diff (°C) 0.8 �0.1 �0.2 �0.7 0.6 �0.7 5.5 0.6 1.2 0.0 0.0 �1.4 0.0 �0.6
Avg ratio 1.033 0.992 0.993 0.951 1.036 0.623 1.651 0.998 1.050 0.999 0.999 0.863 1.0 0.951
Std dev ratio 0.030 0.036 0.031 0.052 0.018 0.314 0.292 2.925 0.025 0.025 0.026 0.043 0.010 0.033
Bias (°C) 0.81 �0.10 �0.19 �0.68 0.56 �0.73 5.52 0.60 1.13 �0.01 �0.03 �1.39 0.00 �0.65
MAE (°C) 0.91 0.36 0.61 0.75 0.56 0.74 5.52 0.77 1.13 0.19 0.46 1.39 0.20 0.65
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daily and yearly ones. In particular, selected plots of
monthly precipitation bias_% and MAE_% are shown
in Figs. 9–12. The first of these figures, for the TX-
RG69 station, shows the statistic parameters moving
toward zero for each month. This pattern is magnified
in Fig. 10, which refers to the significant reference sta-
tion (ID-163x20) highlighted above. A clear improve-
ment is not evident in Fig. 11, which refers to one of the
reference stations located in Oklahoma (OK-131).
However, statistics for this station were calculated us-
ing a time series with a limited number of monthly
members (7) contained in the period 1995–2001. Figure
12, for a reference station located in Georgia (GA-08),
highlights the expected improvement of the monthly
MAE_% while the monthly bias_% appears to slightly
and repeatedly worsen. For this and the other reference
station located in Georgia (GA-48), this effect can be
noted also on the bias_% calculated on the daily and
yearly bases. These results can be expected in the

southeastern region of the United States, where rainfall
patterns show great yearly and seasonal variability,
with midsummer convective storms with high intensity
and low spatial correlation. For this region, Bosch et al.
(1999) highlighted low correlation of rain gauge records
at distances over 2 km (e.g., the closest COOP station is
4.2 km away). An additional evaluation was performed
on the accumulated monthly precipitation, arranging
the various time series in deciles. Significant and rep-
resentative results are reported in Figs. 13–15 for decile
ranges 1–2, 3–6, and 7–10. Figure 13, for station TX-
RG69, and Fig. 15, for station GA-08, show that the
predicted time series are in good quantitative and quali-
tative agreement with the observed one. In particular,
deciles 5–6 (representing precipitation amount not ex-
ceeded by the 50%–60% of occurrences/near normal)
appear very well represented.

5. Discussion and conclusions

In this paper we have presented a method for con-
structing daily fields of precipitation and temperature

FIG. 10. As in Fig. 9, but for the ID-163x20 station.

FIG. 11. As in Fig. 9, but for the OK-131 station.

FIG. 12. As in Fig. 9, but for the GA-08 station.

FIG. 9. Bias_% and MAE_% calculated on the predicted/closest
COOP station monthly accumulated precipitation values for the
TX-RG69 station.
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(maximum and minimum) by combining weather me-
teorological station records and monthly field esti-
mates. The strength of the developed methodology is in
accounting for climate patterns and for the variation of
climate with elevation. In fact, key components of this
nonconventional method are the identification of topo-
graphically adjusted meteorological patterns (monthly
fields) and the application of a spatialization procedure
applied to daily ratios versus whole recorded values.
The method was implemented over the CONUS, using
quality-controlled datasets, to overcome various needs,
such as historical and regional coverage, topographic
adjustment, and limitations such as station location and
density, and variability for the daily time step. Previous
similar attempts produced only datasets at coarser reso-
lution and/or for a longer time step (monthly/yearly).

The explicit purpose of this study was to estimate the
daily regional response surfaces of precipitation and
temperature (maximum and minimum) versus the in-
terpolation to points. The lack of comparative “true”
reference fields is a persistent drawback for this kind of
assessment. Our strategy of assessment focused on veri-
fying the monthly distribution of the variables derived
from the daily surfaces with the original monthly sur-
faces, on observing the preservation of the source point
records, and on evaluating the statistics for the avail-
able number of independent stations.

We have succeeded in our main objectives, produc-
ing precipitation and temperature fields seamlessly cov-
ering the entire CONUS for each daily time step over a

FIG. 13. Monthly accumulated precipitation deciles (a) ob-
served at the TX-RG69 station, (b) predicted, and (c) observed at
the nearest COOP station.

FIG. 14. As in Fig. 13, but for the ID-163x20 station.
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temporal sequence of 15 341 days, from 1 January 1960
to 31 December 2001. This period covered an extended
historical period needed to adequately describe meteo-
rological fields (around 4-km resolution) to be used in
our planned large-area hydrology modeling applica-
tion. Our areal verification has shown that the new
datasets are consistent with the governing data source
monthly PRISM estimates. The method has shown to
explicitly account for the critical topographic influence
while maintaining a high degree of spatial correlation
and integrity with the longer time step data. These com-
bined achievements are particularly important in ap-
plied climatology as an application of spatial continu-
ous input data to hydrologic simulation models at re-

gional scale, from which the assessments often look into
broad and consistent evaluations of the water budget at
the monthly time step. Although these results could
have been expected, since monthly PRISM estimates
are data source of the applied method, this could not
have been guaranteed. In fact, PRISM was developed
using monthly observation records, which are not nec-
essarily consistent with the daily ones. In doing our
verification, we actually highlighted a number of areas
and associated stations that will need further records
evaluation. This evaluation has the potential for future
improvements of the PRISM grids and the station
records both and also of our daily estimates. In fact, in
some instances for precipitation and for the most arid
zones, the local divergence of the monthly PRISM and
the station records has shown the potential for affecting
the final records estimated at the original COOP sta-
tion locations.

Tne analysis of the obtained results shows that the
original daily values from the COOP stations are mini-
mally altered by the applied method. Meanwhile, the
results for a limited number of reference points scat-
tered in the CONUS show that daily precipitation and
temperature estimates relative to the nearest-neighbor
method estimates are distinctively improved over an
extended range of elevation and distance (e.g., station
ID-163-x20 for precipitation and ID-163-x14 for tem-
perature, which are located at a topographic setting
very different from the nearest COOP recording sta-
tion). The achieved improvements are either less evi-
dent or negligible for the other stations of our refer-
encing set because of the quality and distance of the
nearest station data, along with the local climatic pat-
terns (e.g., southeastern region). More noticeable are
the results at the longer time step (monthly/yearly) and
the deciles distribution, which show a general improved
agreement.

In addition, we have achieved two main goals and
addressed associated needs. The first one is the dem-
onstration that the method is suitable for being imple-
mented in a GIS environment, thereby providing a way
to temporally disaggregate the monthly PRISM maps
to the daily time step. In fact, it was desirable to gain an
alternative and simple method for the generalization of
meteorological variables over large distances and eleva-
tions. We have demonstrated that this method, combin-
ing data and a simple IDW interpolator, provides rea-
sonable results in critical situations, such as those with
orographic influence and low spatial density of stations.
The documented technique, components, and data
sources can be systematically applied with a GIS using
PRISM estimates, which are readily available on the
Internet, and ground observation records. The second

FIG. 15. As in Fig. 13, but for the GA-08 station.
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one is the initialization of daily precipitation and tem-
perature fields, which will be used for future compari-
sons/improvements of the approach, given the absence
of “true” reference fields.

Based on these observations, we are planning a fur-
ther verification of the data for an extended set of ref-
erence stations and a cross-validation error analysis to
provide an uncertainty estimate. Future research plans
include the areal comparisons in highly monitored wa-
tersheds, comparison with other similar datasets, inves-
tigation of the limitations of the IDW within the de-
scribed methodology, inclusion of more sophisticated
and/or adaptive (i.e., based upon station density and
conditioned parameterization to address the underlined
issue of the rain/no rain phase for the precipitation)
interpolation methods, as well as taking into consider-
ation the heterogeneous and biased distribution of the
recording stations and quality of the data sources.

The datasets are serially and spatially complete
(three sets of 15 341 grids with no gaps) for the period
1960–2001 and were created to fulfill the requirements
of the hydrologic-based modeling framework being
implemented in the CEAP project at the national scale,
which plans to evaluate and track long-term effects on
water quality from the implementation of conservation
practices (CEAP currently implements the data sum-
marized in the units composing the USGS HUC water-
sheds). The gridded data cell size (2.5 min, 	4 km) has
the potential to provide adequate input to a wide spa-
tial range of more detailed features replacing the HUCs
in the future.
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